Math 564: Advance Analysis 1
Lecture 1

Motivation for measure theory.
From probability. We can do probabiling on finite sexts, such as n coiatlips:

The prob of each word $w \in 2^{n}$ is $\left(\frac{1}{3}\right)^{\text {\#ot Os }} \cdot\left(\frac{2}{3}\right)^{\text {\#of } 1 s}$.
We would like to take $n=\infty$, ie. The space of infinite sanacuces of $O_{s} A$ is anal answers questions like: what's the porbabilidg int a randow word we 2^{N} doesu't have 00111 as a suberord? Taus out the ausuer is 0 , but to a-svere it we weed a notion of probability on $2 \mathbb{N}$ kat "extecds" the notion of $1 / 3 / 2 / 3$ probability on 2^{n} for each u.

From geometry. After all, we want to have a unction of

- length for subsets of \mathbb{R}
- area for subset of \mathbb{R}^{2}
- volume for subser of \mathbb{R}^{3}

Sa, bo, \mathbb{R}^{2}, we can compute the area of rectangles $I \times I$, dune $I, J^{\prime} \leq \mathbb{R}$ are intervals, by length (I) - length. (J). This extends to finite disjoint unions of rectacyles: just take
the sum. (Luth of $I=$ right endpt - left endpt.)
What aboul other sets, even just open sets.

We can tole the "inner neaswe" = area
of fully inside rectangles
and the "outer measure" = the cree of rectangles that
intersect A al hope hat for a five enough grid these cumbers will get arbitrarily close. But for high sets rill this happen? The Banach-Tarski $(O=O+0)$ paradox in \mathbb{R}^{3} sags that one carl hope that a notion of volans can be defined for de sits hut we at least hope we can do if for open al 'closed sets.
From analysis. We want to have vice cases of fachiras the are losel under coal operations, ia particular limits. Indeed, a poiatuise limit of continuous (even smooth) functions may not be Riemaciu iatergrable. In particular, we wed a lefter integration theory al larger clanas of integrable tmefiens kat are dosed under praise limits.

Measures, their construction, and properties
Polish spaces. A metric space (x, d) is called Polish if it is separable (aclmits a coble dense set) and d is complete (all Cant sequences converge).

Exangles. $\circ \mathbb{R}$ anl wore generally \mathbb{R}^{d} with netric $d(\vec{x}, \vec{y})==$ $\|\vec{x}-\vec{y}\|_{\infty}$, here $\|\vec{x}\|_{a}=\max _{1 \leq i \leq d}\left|x_{i}\right|$. ORec onefrics of the form $\mid\left(\vec{x}-y^{-j} \|_{p}\right.$, chene $1 \leq p<\infty$, are egsivaliut to his wetric (prochce the sane open sets). Hece $\|\vec{x}\|_{p}:=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$.

- Closed rubets of Polish spaces are Polish.

Incleed, they cre still a-plete with the same ceffic and separability is teredifary (HW).
In particular, $[0, \infty) \leq \mathbb{R}$ is Polich.

- Unat about $[0,1) ? N_{0}$ in the asual anc fric $d(x, g)=$ $|y-x|$ bewnen it's not womplete. But ue can change the wetric to an equivaleut one so that is Polish. Tala a homeomorphism (a confin uoses bijection uith contionears inverse) betacen $[0,1)$ of $[0, \infty)$ al wopt the uetric from $[0, \infty)$ to $[0,1)$.
- In fad ifts a theorm of Descriptive Sof Theory teA ${ }^{\prime}$ dl $G \delta$ subsets ot Polish spaces are "Polishable", iee. admit an eysiualout Dolish wotric. $G_{\delta}=$ ctbl' intersection of gpen suts (e.g. all closed wefs ic etric paces are los HW).
 on $A^{(N}$ by $d(x, s):=1=\mathbb{N}, A=2:=\{0, B$. We defice a effic on $A^{(N}$ by $d(x, y):=\frac{1}{2^{n}(x, s)}, \begin{aligned} & \text {, were } n(x, y) \text { is the tirst iuckex } \\ & n \in \mathbb{N} \text { at which } x(n) \neq s(s) \text {. }\end{aligned}$ $\overbrace{3}$ $n \in \mathbb{N}$ at which $x(n) \neq s(s)$.

To pictare A^{N}, ae dran a tree: I'll dram for 2^{x} : enh elempent of $2^{(N)}$ is an infinite branch through this tree. The losed ball of raclius $\frac{1}{2}$ about $x \in \mathbb{A}^{\mathbb{N}}$ is

$$
\bar{B}_{2 \cdot n}(x):=\left\{y \in A^{\mathbb{N}}:\left.y\right|_{n}=\left.x\right|_{n}\right\}
$$

Eivery cleenat of $\bar{B}_{2^{-u}}|x|$ is a ceater of thisball.
Bulls here are uliaclers. For a tinite vord $w \in A^{n}$, we define the cyliader at w to le:

$$
[w]_{A}:=\left\{x \in A^{\mathbb{N}}:\left.x\right|_{n}=w\right\} .
$$

We just san tua balls are cylincles. Cylinders ane hoth closed and open. Incleed, cylatiders are open halls al a wongletrect of a cyliader is a (ctbl chijjoiat) usion of cylinders. We call then clopen set.
Propositisu. $A^{\mathbb{N}}$ is sparable. the set of finite sescence ic A
Pcoof. Tuke $Q:=\left\{w a^{\infty}: w \in A^{<\mathbb{N}}\right\}$, whene $a \in A$ is a fixed lettec and a^{∞} is the infinite word ancua a...
$Q<$ clense becess bo awy cylinclec $[w], \quad[w] \cap Q 3$ waya...

Proposition. (a) $A^{\mathbb{N}}$ with this wetrec is wonplete, hence Polish.
(b) If A is finite, s_{c} 2, $A^{(N}$ is erepact.

Proot. HW.
2^{N} is called Cantor space and \mathbb{N}^{N} is called Baire space.
Most spaces is cualysis are Polish, maybe under switching the metric to an equivalent one. For the rest of the course, well work with \mathbb{R}^{d} and $2^{\mathbb{N}}$ combe also $\mathbb{N}^{\mathbb{N}}$).

T-alyebras and measurable spaces.
We like open al dosed subsets of metric spaces, bat wed like to also work with their (ctbll unions, ictersections, and Nair coophementa,
$\frac{\text { Def. Lt } X}{A}$ he a set (Thick of it as par sane, \mathbb{R}^{d} or $Z^{(N)}$). $\overline{A_{n}}$ algehren of roberts of X is a collection $A \leq P(X)$ that contains \varnothing and is closed under waple-entr and finite anions (hence also finite intersection, hoy De Morgan's (ga).
An algebra is called a σ-algebra if if's moreover closed under Abl wnionc (hence also cthl intersechons).

Examples. O Finite unions of cylinders in $2^{N N}$ from an algebra.

- Finite unions of boxes in \mathbb{R}^{d} form an algebra. By a box we mean a set of the form

$$
I_{1} \times I_{2} \times \ldots \times I_{d},
$$

there each I_{j} is an interval $(a, b)^{\prime \prime}$ or $(a, b]$, or $[a, b)$ or $[a, b]$. WW

